Streamlet:
 Textbook Streamlined Blockchains

Benjamin Chan
Cornell University

Joint work with Elaine Shi
cbr.stanford.edu/sbc20/

"Simplifying Consensus"

Benjamin Chan
Cornell University

Joint work with Elaine Shi

1. Modeling consensus (5min)
2. Motivating simplicity as a goal (a few seconds)
3. Our protocol (20min)
4. Modeling consensus (5min)
5. Motivating simplicity as a goal (a few seconds)
6. Our protocol (20min)

Goal: walk away

1. Modeling consensus (5min)
2. Motivating simplicity as a goal (a few seconds)
3. Our protocol (20min)

Goal: walk away
and understand a consensus protocol

What is consensus?

What insus? Modeling Blockchain

Modeling Blockchain

Modeling Blockchain

- Some known set of users
- "permissioned"

Modeling Blockchain

Why the permissioned setting?

Modeling Blockchain

Why the permissioned setting?

Answer: Proof-of-Stake

Modeling Blockchain

Why the permissioned setting?

Answer: Proof-of-Stake
Different setting than
PoW!!

\square

Modeling Blockchain

Why the permissioned setting?

Answer: Proof-of-Stake
Different setting than
PoW!! (true finality, speed, partition-resistant)

Modeling Blockchain

- Some known set of users
- "permissioned"

Modeling Blockchain

- Some known set of users
- "permissioned"

- Each user maintains ordered chain of blocks

Modeling Blockchain

- Some known set of users
- "permissioned"
- Each user maintains ordered chain of blocks

Modeling Blockchain

- Some known set of users
- "permissioned"
- Each user maintains ordered chain of blocks

- Consistency: Everyone sees a prefix of the same chain!

Modeling Blockchain

- Some known set of users
- "permissioned"
- Each user maintains ordered chain of blocks

- Consistency
- Liveness

Modeling Blockchain

- Some known set of users
- "permissioned"
- Each user maintains ordered chain of blocks

- Consistency
- Liveness: must be able to confirm new blocks

Introducing adversaries

Introducing adversaries

- Malicious users

Introducing adversaries

- Malicious users
- Messages may be lost, delayed, reordered

Introducing adversaries

- Malicious users
- Messages may be lost, delayed, reordered

This problem is notoriously hard!

This problem is notoriously hard!

- Paxos ('70s)
- PBFT ('99)
- Raft (2014)

This problem is notoriously hard!

- Paxos ('70s) - "Paxos Made Simple", "ABCDs of Paxos" (2001)
- PBFT ('99)
- Raft (2014)

This problem is notoriously hard!

- Paxos ('70s) - "Paxos Made Simple", "ABCDs of Paxos" (2001)
- PBFT ('99) - "Hotstuff" (2018)
- Raft (2014)

This problem is notoriously hard!

- Paxos ('70s) - "Paxos Made Simple", "ABCDs of Paxos" (2001)
- PBFT ('99) - "Hotstuff" (2018)
- Raft (2014) - "Raft Refloated: Do We Have Consensus?" (2014)

This problem is notoriously hard!

- Paxos ('70s) - "Paxos Made Simple","ABCDs of Paxos" (2001)
- PBFT ('99) - "Hotstuff" (2018)
- Raft (2014) - "Raft Refloated: Do We Have Consensus?" (2014)
- Blockchains (2016+)
- Dfinity
- Casper
- Algorand
- Hotstuff
- Pala

This problem is notoriously hard!

- Paxos ('70s) - "Paxos Made Simple", "ABCDs of Paxos" (2001)
- PBFT ('99) - "Hotstuff" (2018)
- Raft (2014) - "Raft Refloated: Do We Have Consensus?" (2014)
- Blockchains (2016+) New "streamlined"
- Dfinity
- Casper
- Algorand
- Hotstuff
- Pala

This problem is notoriously hard!

- Paxos ('70s) - "Paxos Made Simple", "ABCDs of Paxos" (2001)
- PBFT ('99) - "Hotstuff" (2018)
- Raft (2014) - "Raft Refloated: Do We Have Consensus?" (2014)
- Blockchains (2016+) New "streamlined"
- Dfinity
- Casper
- Algorand
...but can we eliminate
- Hotstuff
the subtleties?
- Pala

Motivating Simpler Consensus Protocols

Motivating Simpler Consensus Protocols

- Simpler Implementation

Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs

Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source

Motivating Simpler Consensus Protocols

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- \$\$\$

Motivating Simpler Consensus F

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- \$\$\$

Motivating Simpler Consensus F

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- \$\$\$

Motivating Simpler Consensus F

- Simpler Implementation
- Fewer Bugs
- Lower onboarding cost
- Better Open Source
- \$\$\$

Motivating S

- Simpler Imf
- Fewer Bugs
- Lower onbc
- Better Ope
- \$\$\$

Our Work: Streamlet

Our Work: Streamlet

Goal:

A "Simplest Possible", Easy-to-Understand,
Textbook Consensus Protocol

Our Work: Streamlet

Goal:

A "Simplest Possible",
Easy-to-Understand,
Textbook Consensus Protocol (Blockchain)

Our Work: Streamlet

Two Assumptions:

1. Epochs

Processes have local clocks, and run in synchronized* epochs of 1 sec each.

Our Work: Streamlet

Two Assumptions:

1. Epochs

Processes have local clocks, and run in synchronized* epochs of 1 sec each.
2. Elect a leader in each epoch, known by all

Our Work: Streamlet

Two Assumptions:

1. Epochs

Processes have local clocks, and run in synchronized* epochs of 1 sec each.
2. Elect a leader in each epoch, known by all
i.e. randomly chosen, given epoch e
$L_{e}=H(e) \bmod n$

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

pointer to parent block

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

Epoch number in which block was 'proposed'

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed' by $2 / 3$ distinct processes (implies a majority of honest processes have signed it)

Definitions

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch has random leader
- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes
- Notarized blockchain

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed' by $2 / 3$ distinct processes
- Notarized blockchain

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes
- Notarized blockchain

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes
- Notarized blockchain
- Block "height" \# epoch \#

Definitions

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block
- A block ‘signed’ by $2 / 3$ distinct processes
- Notarized blockchain
- Block "height" \# epoch \#

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader
Definitions:
- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block: signed by

2/3 processes

The Streamlet Protocol

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader
Definitions:
- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block: signed by

2/3 processes

The Streamlet Protocol

In every epoch $e=1,2, \ldots$

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader
Definitions:
- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block: signed by

2/3 processes

The Streamlet Protocol

In every epoch $e=1,2, \ldots$

- leader,

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader

Definitions:

$\square \quad$ Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

- Notarized block: signed by

2/3 processes
creates a new block $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen so far

The Streamlet Protocol

In every epoch $e=1,2, \ldots$

- leader,

Definitions:
Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$

- Notarized block: signed by

2/3 processes
creates a new block $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$
extending longest notarized chain they've seen so far

- voters,
signs first proposal b (from leader, for e)
i.f.f. b extends a longest notarized chain seen so far (by voter)

The Streamlet Protocol

finalization rule:

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader
Definitions:
- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block: signed by

2/3 processes

The Streamlet Protocol

finalization rule:
 take any notarized chain that ends in 3 consecutive epochs;

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader

Definitions:

- Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block: signed by

2/3 processes

The Streamlet Protocol

finalization rule:

take any notarized chain that ends in 3 consecutive epochs;

Assumptions:

- (Synchronized*) epochs of length 1 sec
- Each epoch
has random leader
Definitions:
$\square \quad$ Block $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$
- Notarized block: signed by

2/3 processes chop off the last block, and finalize

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example (3 honest, 1 malicious)

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example (3 honest, 1 malicious)

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Analysis

Consistency: no synchrony assumptions, $\mathrm{f}<\mathrm{n} / 3$

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Analysis

Consistency: no synchrony assumptions, $\mathrm{f}<\mathrm{n} / 3$

 Liveness: synchrony assumptions, expected $\mathrm{O}(1)$ rounds!In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Analysis

Consistency: no synchrony assumptions, $\mathrm{f}<\mathrm{n} / 3$ Liveness: synchrony assumptions, expected $\mathrm{O}(1)$ rounds! (optimizable)

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$
\square leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
\square voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized=2/3 votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Example

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Allows two notarized blocks at the same height!

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Allows two notarized blocks at the same height! (usually)

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Possible

Impossible

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Possible

Impossible

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Possible

Impossible

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Possible

Impossible

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

Consistency Sketch

Cannot both be notarized!!

Lemma 1: Each epoch is associated with at most one notarized block.

Consistency Sketch

Cannot both be notarized!!

Lemma 1: Each epoch is associated with at most one notarized block.

Proof:

- Each honest process votes only once for each epoch.

Consistency Sketch

Cannot both be notarized!!

Lemma 1: Each epoch is associated with at most one notarized block.

Proof:
$\square \quad$ Each honest process votes only once for each epoch.

- Each notarized block requires 2n/3 distinct votes.

Consistency Sketch

Cannot both be notarized!!

Lemma 1: Each epoch is associated with at most one notarized block.

Proof:

$\square \quad$ Each honest process votes only once for each epoch.

- Each notarized block requires 2n/3 distinct votes.
\square Multiple notarized blocks within epoch $=4 n / 3$ votes .

Consistency Sketch

Cannot both be notarized!!

Lemma 1: Each epoch is associated with at most one notarized block.

Proof:

$\square \quad$ Each honest process votes only once for each epoch.

- Each notarized block requires 2n/3 distinct votes.
\square Multiple notarized blocks within epoch $=4 n / 3$ votes.
- Letting $\mathrm{f}<\mathrm{n} / 3$, we have (at best) $2 n / 3+2 f<4 n / 3$ votes to go around.

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

Now, the main lemma...

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $\mathrm{X}<5$:

Case $X>7$:

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case $\mathrm{X}>7$:

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case $\mathrm{X}>7$:

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5:

Case $\mathrm{X}>7$:

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize
voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize
voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5 :

Case $\mathrm{X}>7$:
voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen

Consistency Sketch

4 processes, 3 honest, 1 malicious Require 3 votes to notarize

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $\mathrm{X}>7$:

- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X , then epoch 5 block -><-

Case $\mathrm{X}>7$:

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X>7$:

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X>7$:

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X>7$:

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X>7$:

Consistency Sketch

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X>7$: Signed 7, then X-><-

Consistency Sketch

Intuition: Can't rewrite history

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case $X<5$: at least one honest process must have signed X, then epoch 5 block -><-

Case $X>7$: Signed 7, then X-><-

Consistency Sketch

Intuition: Can't rewrite history

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Pf: Assume for contradiction that an epoch X block, with the same height, exists.

Case X < 5: at least one honest process must have signed X, then epoch 5 block -><-

Case X > 7: Signed 7, then X-><-
(can add a new notarized block at the same height as an existing notarized block, but never in the past)

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.

Lemma 2: No other notarized block, in past or future, can share the same height as block 6

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.
Lemma 2: No other notarized block, in past or future, can share the same height as block 6
Lemma 3: All longer notarized chains, in any view, must extend block 6

Consistency Sketch

Consistency Sketch

Lemma 1: Each epoch is associated with at most one notarized block.
Lemma 2: No other notarized block, in past or future, can share the same height as block 6
Lemma 3: All longer finalized chains, in any view, must extend block 6

No synchrony assumptions!

Consistency Recap (Intuitive)

1. Can't rewrite history
2. One block per epoch
3. Demonstrate sudden chain growth

Consistency Recap (Intuitive)

1. Can't rewrite history

2. One block per epoch
3. Demonstrate sudden chain growth
= chain provably longer than competitors

Consistency Recap (Intuitive)

1. Can't rewrite history

2. One block per epoch
3. Demonstrate sudden chain growth (why 3?)
= chain provably longer than competitors

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Liveness?

We need many good leaders in a row

Liveness?

We need many good leaders in a row

- Random leaders: get lucky
- Stable leader mechanism
- Not bad!

Recap

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t x s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Recap

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes) finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: "Simplest-Possible", Drop-in replacement for PBFT

Recap

In every epoch $e=1,2, \ldots$
leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen

- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block

Goal: "Simplest-Possible", Drop-in replacement for PBFT Result: Consensus with a single message type, minimal subtlety

Recap

In every epoch $e=1,2, \ldots$
leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen

- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Goal: "Simplest-Possible", Drop-in replacement for PBFT Result: Consensus with a single message type, minimal subtlety - Consistency: $\mathrm{f}<\mathrm{n} / 3$, no synchrony assumptions!

Recap

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e\right.$, txs $)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Goal: "Simplest-Possible", Drop-in replacement for PBFT
Result: Consensus with a single message type, minimal subtlety
- Consistency: f < $n / 3$, no synchrony assumptions!
- Liveness: when network is reliable (GST model)

Recap

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t x s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Goal: "Simplest-Possible", Drop-in replacement for PBFT
Result: Consensus with a single message type, minimal subtlety
- Consistency: f < $n / 3$, no synchrony assumptions!
- Liveness: when network is reliable (GST model)

Eprint: ia.cr/2020/088

Questions?

In every epoch $e=1,2, \ldots$

- leader proposes $b=\left(H\left(b^{\prime}\right), e, t \times s\right)$ extending longest notarized chain they've seen
- voters sign the first valid proposal b, but i.f.f. b also extends a longest notarized chain the voter has seen (notarized $=2 / 3$ votes)
finalize any notarized chain ending with 3 consecutive epochs, chopping off last block
Goal: "Simplest-Possible", Drop-in replacement for PBFT
Result: Consensus with a single message type, minimal subtlety
- Consistency: $\mathrm{f}<\mathrm{n} / 3$, no synchrony assumptions!
- Liveness: when network is reliable (GST model)

Eprint: ia.cr/2020/088

